Applying Behavioral Detection on Android-Based Devices
نویسندگان
چکیده
We present Andromaly a behavioral-based detection framework for Android-powered mobile devices. The proposed framework realizes a Host-based Intrusion Detection System (HIDS) that continuously monitors various features and events obtained from the mobile device, and then applies Machine Learning methods to classify the collected data as normal (benign) or abnormal (malicious). Since no malicious applications are yet available for Android, we evaluated Andromaly’s ability to differentiate between game and tool applications. Successful differentiation between games and tools is expected to provide a positive indication about the ability of such methods to learn and model the behavior of an Android application and potentially detect malicious applications. Several combinations of classification algorithms, feature selections and the number of top features were evaluated. Empirical results suggest that the proposed detection framework is effective in detecting types of applications having similar behavior, which is an indication for the ability to detect unknown malware in the
منابع مشابه
Mobile malware detection through analysis of deviations in application network behavior
In this paper we present a new behavior-based anomaly detection system for detecting meaningful deviations in a mobile application’s network behavior. The main goal of the proposed system is to protect mobile device users and cellular infrastructure companies from malicious applications by: (1) identification of malicious attacks or masquerading applications installed on a mobile device, and (2...
متن کاملAnalysis of Android Device-Based Solutions for Fall Detection
Falls are a major cause of health and psychological problems as well as hospitalization costs among older adults. Thus, the investigation on automatic Fall Detection Systems (FDSs) has received special attention from the research community during the last decade. In this area, the widespread popularity, decreasing price, computing capabilities, built-in sensors and multiplicity of wireless inte...
متن کاملThree-Phase Detection and Classification for Android Malware Based on Common Behaviors
Android is one of the most popular operating systems used in mobile devices. Its popularity also renders it a common target for attackers. We propose an efficient and accurate three-phase behavior-based approach for detecting and classifying malicious Android applications. In the proposed approach, the first two phases detect a malicious application and the final phase classifies the detected m...
متن کاملAn Effective Approach to Detect Malware that Exploit Information Hiding in Android Devices
A Malware is a very big threat in today’s computing world. It continues to grow in volume and evolve in complexity. Modern malware uses advanced techniques to hide from static and dynamic analysis tools. The existing system uses classification based and regression based approach for detection. The proposed system utilizes the classification based approach and regression based approach for detec...
متن کاملBlocking Advertisements on Android Devices Using Monitoring Techniques
This paper explores the effectiveness and challenges of using monitoring techniques, based on Aspect-Oriented Programming, to block adware at the library level, on mobile devices based on Android. Our method is systematic and general: it can be applied to block advertisements from existing and future advertisement networks. We also present miAdBlocker, an industrial proof-ofconcept application,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010